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Organolanthanide chemistry has witnessed spectacular growth
in the past 20 years. In this development, alkyl and hydrido
complexes bearing two substituted or unsubstituted cyclopenta-
dienyl ligands have occupied a specially important place because
of their high activity and unique behavior in various catalytic
processes.1 Although mono(cyclopentadienyl or its derivative)-
supported lanthanide(II)-alkyl and lanthanide(III)-dihydride
complexes are of great interest both structurally and chemically
in comparison with the metallocene analogues, isolation and
structural characterization of such a species has never been
achieved to date owing to ligand redistribution problems. We
report here the first example of a structurally characterized
(pentamethylcyclopentadienyl)lanthanide(II) alkyl complex1,2

which upon reaction with H3SiPh afforded the first lanthanide-
(III) dihydride complex 2.3,4 Some preliminary results that
demonstrate the utility of these new compounds in catalytic
processes such as the hydrosilylation of olefins are also described.

During our recent studies on lanthanide(II) complexes bearing
mixed pentamethylcyclopentadienyl (C5Me5) and a heteroatom-
containing monodentate anionic ligand (ER) (ER) OAr, SAr,
NRR′, PHAr),5 we became curious about the analogous lanthani-
de(II) alkyl or hydride complexes. Since the alkyl or hydride
ligand itself could serve as an active site, such a Ln(II) compound

was anticipated to show more diverse and higher reactivity than
its ER analogues.5 Analogous to the synthesis of Sm(II) complexes
bearing the mixed C5Me5/ER ligands,5c,h the reaction of (C5Me5)2-
Sm(THF)2 with 1 equiv of KCH(SiMe3)2 afforded the corre-
sponding C5Me5/CH(SiMe3)2-ligated Sm(II) complex [(C5Me5)-
Sm(CH(SiMe3)2)(C5Me5)K(THF)2]n (1) in 91% isolated yield as
green crystals, in which the “(C5Me5)K(THF)2” unit acts as a
neutral stabilization ligand (eq 1).6 The overall structure of1 is

similar to those previously reported for its ER analogues,5c and
so are the Sm-C5Me5 bond distances (av 2.854(5) and 2.906(5)
Å in 1). The Sm-alkyl σ-bond distance (2.652(9) Å) in1 is
somewhat shorter than those found in the only other structurally
characterized Sm(II)-alkyl complex Sm{C(SiMe)2(SiMe2OMe)}2-
(THF) (2.787(5) and 2.845(5) Å),2c but longer than those found
in Sm(III)-alkyl complexes such as (C5Me5)2SmMe(THF) (2.48-
(1) Å).7

When1 was stirred with 2 or more equiv of H3SiPh in THF,
an orange-red crystalline product, [(C5Me5)Sm(µ-H)2]6[(µ-H)K-
(THF)2]3 (2), was obtained in 42% isolated yield after recrystal-
lization from THF/hexane (eq 2).8 An X-ray analysis has shown

that2 is a polyhydrido Sm(III)/K cluster complex which consists
formally of six “(C5Me5)SmH2” and three “KH(THF)2” units
(Figure 1).6 All hydrido ligands in2 could be located and refined.
The six Sm atoms constitute a trigonal prism whose three squares
are each capped by one K atom. There are 15 hydrido ligands in
this molecule, one being body-centered in aµ6-H-Sm6 fashion
and others each capping a metal triangle in eitherµ3-H-Sm3 or
µ3-H-Sm2K form. The whole molecule has crystallographicD3h

symmetry. One three-fold axis passes through the Sm3-µ3-capped
and the Sm6-µ6-centered H atoms. Perpendicular to this three-
fold axis exist three two-fold axes, each passing through both
theµ6-centered H and one K atoms and bisecting a Sm‚‚‚Sm prism
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edge. The Sm-H bond distances of theµ3-H-Sm3 bonds (2.25-
(2) Å) are almost the same as those of theµ3-H-Sm2K bonds
(2.23(4) and 2.26(6) Å), which are much shorter than those of
the interstitialµ6-H-Sm bonds (2.8010(3) Å). These Sm-H
bond distances could be compared with the 1.80-2.75 Å bond
distance range reported for the Sm(III)-H bonds in samarocene
complexes.9 The Sm-C5Me5 bond distances in2 (av 2.745(6)
Å) are typical for Sm(III)-C5Me5 bonds, while the Sm‚‚‚Sm
separations in2 (3.6084(6) and 3.7133(5) Å) are significantly
shorter than those found in the metallocene type Sm(III)
complexes such as [(C5Me5)2Sm(µ-H)]2 (3.905(3) Å).10 The K-H
bond distances in2 (2.58(4) and 2.89(7) Å) can be compared
with those found in KOsH3(PMe2Ph)3 (2.52-3.02 Å)11a and
[K(18-crown-6)][WH5(PMe3)3] (2.684(6)-2.750(6) Å).11b

The “self-assembly” of “(C5Me5)SmH2” to form a trigonal
prism Sm6 skeleton in2 is in contrast with what was previously
observed in the case of (cyclopentadienyl)lanthanide(III) dichlo-
ride species such as “CpYbCl2” and “CpSmCl2”, which constituted
a Yb6 octahedron in [Cp6Yb6Cl13]- and a Sm12 icosahedron in
[Cp12Sm12Cl24], respectively.12,13As far as we are aware, complex
2 represents the first example of a structurally characterized
dihydrido lanthanide complex1a,3 and also the first example of a
structurally characterized polyhydrido lanthanide cluster with an
interstitial hydrogen atom.14-17

In relation to the formation of2,8 1 showed good activity and
selectivity for the hydrosilylation of several types of olefins (Table
1).18 Some of these results are in contrast with those previously
reported for the lanthanide metallocene catalysts.19 Further studies
on the reactivity of1 and 2 as well as on the synthesis and
reactivity of other lanthanide(II) alkyl complexes analogous to1
are in progress.20
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Figure 1. Molecular structure of2. (Top) A general view. (Bottom) A
view along the three-fold axis. The Sm-C5Me5 bonds are omitted for
clarity.

Table 1. Hydrosilylation of Olefins by1a

a Conditions: substrate (1.0 mmol), H3SiPh (1.1 mmol),1 (0.02
mmol), in toluene, at room temperature, unless otherwise noted.
b H2SiPh2 (1.1 mmol) was used instead of H3SiPh.
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